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The characterization of the behaviour of nonlinear aeroelastic systems has become a very
important research topic in the Aerospace Industry. However, most work carried to-date has
concentrated upon systems containing structural or aerodynamic nonlinearities. The purpose
of this paper is to study the stability of a simple aeroservoelastic system with nonlinearities in
the control system and power control unit. The work considers both structural and control law
nonlinearities and assesses the stability of the system response using bifurcation diagrams. It is
shown that simple feedback systems designed to increase the stability of the linearized system
also stabilize the nonlinear system, although their e!ects can be less pronounced. Additionally,
a nonlinear control law designed to limit the control surface pitch response was found to
increase the #utter speed considerably by forcing the system to undergo limit cycle oscillations
instead of #uttering. Finally, friction was found to a!ect the damping of the system but not its
stability, as long as the amplitude of the frictional force is low enough not to cause stoppages in
the motion. ( 2000 Academic Press
1. INTRODUCTION

OVER THE PAST TWO DECADES, there has been a pronounced increase in research concerning
nonlinear aeroelasticity. It has been known for quite some time that aircraft contain
a number of nonlinearities which can signi"cantly a!ect the dynamic behaviour. These
nonlinearities give rise to phenomena such as limit cycle oscillations (LCOs) that cannot
occur if the system is linear. Consequently, it is impossible to model and predict such
behaviour using a linear analysis. The in#uence of nonlinearities is getting greater with each
new generation of aircraft; therefore, the aerospace industry is starting to address the need
for improved nonlinear modelling and predictive capability. The whole area of prediction
and characterization of LCOs due to aerodynamic, structural and control nonlinearities has
been de"ned as being an area of critical research interest (Cooper & Noll 1995).s

Some early work on nonlinear aeroelasticity, e.g. by Woolston et al. (1955) showed that
limited amplitude oscillations are nonlinear phenomena, and Breitbach (1978) identi"ed
a number of sources of nonlinearity in aircraft. Since then, several investigations of
nonlinear aeroelastic behaviour have been conducted, most of which concentrated on
structural and, in particular, aerodynamic nonlinearities. In this latter area, most work has
concentrated upon the development of unsteady CFD solutions (AGARD 1998) primarily
in the transonic region. Some recent notable exceptions are the experimental work reported
hroughout this paper, the word -utter is used to denote an unstable divergent oscillation, whereas limit cycle
cillation is used to denote an oscillation of bounded amplitude.
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in Holden et al. (1995) and Conner et al. (1997) as well as various numerical studies on
structural nonlinearities, such as Kim & Lee (1996) and Price et al. (1995). There is a relative
dearth of work in the "eld of Aeroservoelasticity, with the exception of such works as
Zimmermann (1991) and Noll (1993).

The increasing power of modern computers allowed the use of increasingly computation-
ally intensive mathematical tools for the characterization of nonlinear behaviour,
such as bifurcation plots (Lee & Kim 1995) and parameter-space sections (Price et al. 1994).
LCOs have been observed and explained in terms of Hopf bifurcations (Price et al. 1995),
and the possibility of LCO control and suppression has also been investigated (Mastroddi
& Morino 1996; Dimitriadis & Cooper 1999; Frampton & Clark 1999). However, the main
subject of all this research has been structural nonlinearities and, to a lesser extent,
aerodynamic nonlinearities (Morton & Beran 1999). Little research has been conducted
into the e!ects of nonlinearities in the control system even though, with the advent of Active
Control Technology (ACT), control systems are becoming increasingly nonlinear. The
performance of nonlinear aeroservoelastic systems throughout the desired #ight envelope as
well as their interaction with nondesigned nonlinearities, such as backlash in the linkage
elements of the control system, has not been thoroughly investigated. Most work on
aeroservoelastic systems has consisted generally of case studies, such as Becker & Vaccaro
(1995).

Frampton & Clark (1999) applied linear active control to a typical section airfoil
with nonlinearity in the #ap restoring spring. However, they concentrated on only one type
of nonlinearity, namely freeplay. In this paper, the aeroservoelastic behaviour of a number
of simple simulated systems with various nonlinearities is investigated and charac-
terized. The purpose of the work is to give an overview of possible nonlinear behaviour
that may occur as a result of the interaction of simple linear and nonlinear control systems
with structural nonlinearities. The following nonlinearities are considered: (i) bilinear
sti!ness (zero-memory transducer nonlinearity); (ii) freeplay sti!ness (zero-memory trans-
ducer nonlinearity); (iii) backlash (transducer nonlinearity with memory); (iv) friction
(zero-memory transducer nonlinearity); (v) pitch limiting control system (control nonlin-
earity with memory).

2. SIMULATED AEROSERVOELASTIC SYSTEM

The basis of all the systems investigated in this work is an extension of the Hancock
aeroelastic model (Hancock et al. 1985). The basic Hancock model is a rigid wing with two
springs at the wing root, giving the system two degrees of freedom, heave and pitch. The
aerodynamics is modelled using quasi-steady strip theory with approximate unsteady
aerodynamic derivatives. The model used here also includes a control surface (Dimitriadis
& Cooper 1999), i.e. it incorporates an additional degree of freedom. The control surface is
driven by a power control unit (PCU) or power actuator. The PCU was modelled along the
lines suggested in Wright (1975) to provide both sti!ness and structural damping. The basic
simulated system, which is shown in Figure 1, was modi"ed by the addition of four typical
structural nonlinearities (bilinear spring, freeplay, backlash and friction) along with three
controllers (feedback, delayed feedback and pitch limits).

3. STRUCTURAL NONLINEARITIES

The PCU contains a pressure feedback spring, as shown in Figure 2. The modelling of the
sti!ness nonlinearities in the PCU followed the analysis in Maharaj et al. (1991)



Figure 1. Basic Hancock model with control surface and PCU.

Figure 2. Power control unit.
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3.1. BILINEAR PCU SPRING

The "rst system examined in this paper has a bilinear pressure feedback spring. Bilinear
sti!ness is a piecewise linear function shown in Figure 3. The sti!ness, K

1
, in the inner

region (delimited by $d in Figure 3) is lower than the sti!ness in the outer region, K
2
.

This is not a straightforward case of bilinear sti!ness in the control surface since, because
the bilinear spring is in the PCU, it a!ects the control surface velocity as well as displace-
ment. The PCU equation is
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where < is the volume of the PCU, N is the bulk modulus of oil, P
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Figure 3. Bilinear sti!ness versus displacement.
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K
F

is the sti!ness of the pressure feedback spring, k is the lever arm ratio, d is the distance
between the PCU axis and the wing chord, b is the control surface de#ection and b

i
is the

demand angle. It can be seen that K
F

multiplies both the bQ and b terms. Hence, a nonlinear
pressure feedback spring a!ects both control surface velocity and displacement.

3.2. FREEPLAY IN PCU SPRING

For this system, the pressure feedback spring contains freeplay. Freeplay sti!ness is also
a piecewise linear function, depicted in Figure 4. In this case, the sti!ness in the inner region
is zero. Again, the freeplay a!ects both control surface velocity and displacement.
Figure 4. Freeplay sti!ness versus displacement.



AEROSERVOELASTIC SYSTEM WITH CONTROL NONLINEARITIES 1177
3.3. BACKLASH IN PCU SPRING

Backlash is a piecewise linear hysteretic nonlinearity. Figure 5 shows the variation of the
force in the PCU with control surface de#ection during a limit cycle oscillation (LCO), in
the presence of backlash in the pressure feedback spring. Whenever the control surface pitch
changes direction, the force in the PCU jumps from one of the sloped lines to the other. The
horizontal distance between the two branches is called the backlash distance. Such behav-
iour can be observed for example in the bearings of all-movable control surfaces of military
aircraft (Luber 1997). As with bilinear sti!ness and freeplay, backlash a!ects both the
velocity and displacement of the control surface of the system investigated here.

3.4. FRICTION IN PCU

This case models friction between the piston seals and the chamber. The friction depends on
the piston velocity, hence the force, F, in the piston is given by

F"A
p
P
J
#F

R
sgn(bQ ), (2)

where F
R

is the magnitude of the friction force. In all the simulations carried out for this
project, it was assumed that F

R
was low enough to allow movement of the piston without

stoppages.

4. CONTROLLERS

4.1. LINEAR FEEDBACK

A velocity and displacement feedback loop was added to the linear system, in order to
increase the #utter speed. The velocity feedback increased the damping, while the displace-
ment feedback increased the sti!ness of the system. The demand angle, b
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, in equation (1)
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Figure 5. Backlash sti!ness versus displacement.



TABLE 1
Open- and closed-loop dampings and natural frequencies of linear system at<"40 m/s.

Open loop Closed Loops

Damping Frequency (Hz) Damping Frequency (Hz)

0)0679 8)7682 0)0630 8)3956
0)0082 14)2815 0)0141 15)6221
0)0408 37)4495 0)1183 58)3950

Figure 6. Open- and closed-loop natural frequencies of linear system: } } }, open loop; **, closed loop.
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where c
12

c
3

are the velocity feedback gains, k
12

k
3

are the displacement feedback gains
and c, h and b are the degrees of freedom, as shown in Figure 1. Hence, the controller was
designed to measure the degrees of freedom and to use them in order to synthesize the
control signal.

In experimental implementations of active control for aeroelastic systems, such as
Vipperman et al. (1998), the system is identi"ed at a number of subcritical #ight conditions
and controllers are designed for each of these conditions. However, since in the present
work the system is mathematical and fully de"ned in terms of dynamic pressure, a controller
was designed which could be e!ective throughout the #ight envelope. The feedback gains
were chosen so as to (i) increase the #utter velocity by 20%, (ii) ensure that the control
signal, b

i
, never exceeds $153, (iii) ensure that the control rate, bQ

i
, never exceeds 503/s, (iv)

the eigenvalues of the system remain complex, i.e. divergence does not occur.
The 20% target was chosen to comply with results presented in papers on #utter

suppression such as Mukhopadhyay (1995). The changes in the natural frequencies at
a speed of 40 m/s are tabulated in Table 1. Figures 6 and 7 show the open- and closed-loop
natural frequencies and dampings, respectively, for a range of airspeeds. The "gures show
that the natural frequencies which combine to cause #utter are more separated in the
closed-loop system than in the open-loop system. Additionally, the damping of the critical
mode is higher in the closed-loop system. The consequent increase in #utter speed is 19)3%.



Figure 7. Open- and closed-loop damping ratios of linear system: } } }, open loop; **, closed loop.
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4.2. DELAYED FEEDBACK

To simulate the fact that real control systems do not act instantaneously, the feedback
signal was delayed. It was found that a delay time equal to *t (the integration time step, set
to 0)001 s) decreased the e!ectiveness of the control system by decreasing the improvement
in #utter speed to 16%. If the delay was increased to 2*t, then the system became unstable
throughout the #ight envelope. Noninteger multiples of the integration time step were also
tested. In order to delay the feedback by a noninteger multiple of the time step, interpola-
tion had to be used, resulting in much longer simulation times. It was found that the system
remained stable up to a delay value of 1)6*t. However, it was decided to stick to a delay
value equal to *t since this amount of delay was enough to demonstrate the decrease in the
e$ciency of the control system while allowing for shorter simulation times.

The delayed feedback control system was also used in conjunction with the freeplay,
bilinear, backlash and friction nonlinearities mentioned above.

4.3. CONTROL SURFACE PITCH LIMIT

An active control system was devised to limit the control surface pitch. Initially, it was
assumed that the control system knows at all times the exact value of the control surface
pitch. The pitch, b, at time t is used in conjunction with the value of the pitch at time t!*t
to predict b(t#dt) using linear curve-"tting, i.e.

b(t#*t)"2b(t)!b(t!*t). (4)

If b(t#*t) exceeds a given limit, b
-*.

, then the control system feeds back !ab through the
actuator, where a is a constant. Since a real control system would not be able to instan-
taneously complete all the calculations, acquire the current value of b and feed it to the
actuator, the feedback in the simulated system is delayed by *t. The feedback signal
produced by this control scheme is plotted in Figure 8 against control surface pitch. The
dashed lines show the pitch limits ($103 in this case). The feedback signal is zero at low
values of b and equal to !ab when b is near the limit.



Figure 8. Nonlinear function of control surface pitch limiting control scheme:**, feedback signal; } }}, $103
pitch limit.
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5. LIMIT CYCLE OSCILLATIONS AND BIFURCATION DIAGRAMS

For a single-degree-of-freedom system, a LCO is a limited amplitude oscillation occurring
around a line singularity (a set of point singularities, in the same way that a line is a set of
points) in the phase-plane called a limit cycle. Such a limit cycle can be seen in Figure 9
where a typical velocity (b0 ) against displacement (b) plot is shown. The resulting curve is the
limit cycle. Limit cycles are singularities since they can either attract the phase trajectories
(stable limit cycle) or repel them (unstable limit cycle) (Dimitriadis & Cooper 1999). In the
case of Figure 9, where a stable limit cycle is shown, the system response will always wind
onto the limit cycle both from the inside and from the outside. In turn, this signi"es that the
limit cycle cannot be crossed. A limit cycle can be classed as period-1, period-2, etc.,
depending on its complexity. Figure 9 shows a limit cycle with only one loop, i.e. period-1.
A period-3 limit cycle, with three loops, can be seen in Figure 10.
Figure 9. Phase-space diagram of a period-1 limit cycle for bilinear system with <"50 m/s.



Figure 10. Phase-space diagram of a period-3 limit cycle for freeplay system with delayed feedback, <"50 m/s.

Figure 11. Fourier transform of a period-1 limit cycle.
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For a multiple-degree-of-freedom system, a limit cycle is a multi-dimensional singularity,
its dimensions being equal to the number of states in the system. However, limit cycles can
still be visualized using phase-plane plots of the type shown in Figures 9 and 10, provided
the velocity and displacement for the same degree-of-freedom (or mode) is plotted. The
frequency content of a limit cycle can be obtained in the classical manner by taking the
Fourier transform of the response. Figure 11 shows the Fourier transform of a period-1
limit cycle. Three frequency components exist at 13, 40 and 67 Hz. In general, the
higher the period of a limit cycle, the more signi"cant frequency components can
be distinguished in the Fourier transform. Figure 12 shows the Fourier transform



Figure 12. Fourier transform of a period-3 limit cycle.
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of a period-3 limit cycle which contains "ve signi"cant frequency components at 10, 31, 51,
72 and 93 Hz.

In the case of aeroelastic systems, whose behaviour changes with airspeed, phase-plane
plots are not su$cient to determine their stability. To this purpose, bifurcation plots can be
used, which can track the stability of a system over any range of airspeeds. Bifurcation plots
can be constructed by obtaining the impulse response of a system at a given #ight condition
and then calculating the displacement of one of the degrees of freedom when the velocity of
the same degree of freedom is zero. If the system is undergoing a LCO at a particular
velocity, then the values of the displacement will be repeated. For example, in the case of
Figure 9, the displacement takes two values at zero velocity. In Figure 10, there are six
possible values of the displacement at zero velocity. In general, the number of points plotted
on a bifurcation plot at a single #ight condition is equal to twice the period index of a limit
cycle, i.e. two points for a period-1 limit cycle, four points for a period-2 limit cycle, and so
on. A bifurcation plot is obtained when all the values of the displacement when the velocity
of that d.o.f. is zero are plotted for a range of discrete airspeeds.

It should be mentioned that, in many cases, the response of nonlinear systems depends
upon initial conditions. This can happen when more than one stable singularities exist in the
phase space, e.g. when two distinct stable limit cycles exist at the same airspeed. In that case,
bifurcation diagrams are not unique but also depend on initial conditions. An experimental
example of this behaviour can be found in Holden et al. (1995). However, all the systems
examined in this work exhibit only one stable singularity in the phase space.

6. STABILITY OF THE AEROSERVOELASTIC SYSTEMS

The system equations were integrated in the time domain using Matlab and Simulink,
employing a Runge}Kutta fourth- and "fth- order time-marching algorithm (Dormand
& Prince 1980). The discontinuous nonlinearities were handled by pinpointing every
occurrence of discontinuity to within machine accuracy. For example, for freeplay sti!ness,
every occurrence of b"$d was solved for to within b"$d$e, where e is the machine
accuracy.



TABLE 2
Stability of the aeroservoelastic systems

System Stability regions

Linear (m/s) (44)9 '44)9
No feedback Stable Flutter
Linear (m/s) (53)5 '53)5
Feedback Stable Flutter
Linear (m/s) (52)1 '52)1
Delayed feedback Stable Flutter
Bilinear (m/s) (37 37}44)6 '44)6
No feedback Stable LCO-1 Flutter
Bilinear (m/s) (51 51}53 53}53)3 '53)3
Feedback Stable LCO-1 LCO-2 Flutter
Bilinear (m/s) (48 48}50 50}51)1 51)5}51)8 '51)8
Delayed feedback Stable LCO-1 LCO-3 LCO-x Flutter
Freeplay (m/s) (16 16}47)5 '47)5
No feedback Stable LCO-3 Flutter
Freeplay (m/s) (17 17}18 18}55 '55
Feedback Stable LCO-1 LCO-3 Flutter
Freeplay (m/s) (17 17}18 18}51 51}52)3 '52)3
Delayed feedback Stable LCO-1 LCO-3 LCO-6 Flutter
Backlash (m/s) (8 8}13 13}34)5 34)5}36 36}44 '44
No feedback Stable LCO-x LCO-1 LCO-2 LCO-1 Flutter
Backlash (m/s) (8 8}53 '53
Feedback Stable LCO-1 Flutter
Backlash (m/s) (8 8}48 48}51 51}52)1 '52)1
Delayed feedback Stable LCO-1 Period}doubl-

ing LCO-1 Flutter
Pitch limit (m/s) (45)5 45)5}57 '57

Stable LCO-x Flutter
Friction (m/s) (48 '48
No feedback Stable Flutter
Friction (m/s) (55)2 '55)2
Feedback Stable Flutter
Friction (m/s) (53)8 '53)8
Delayed feedback Stable Flutter
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The impulse responses of the nonlinear systems described in Section 2 were calculated for
a range of di!erent airspeeds. The e!ect of including a control circuit was also investigated.
Bifurcation plots were then generated in order to characterize the limit cycle behaviour. The
key stability regions for each case are summarized in Table 2. In the table, LCO-n denotes
a period-n LCO for n"1, 2,2, and LCO-x denotes a nonperiodic LCO.

6.1. STABILITY OF BILINEAR STIFFNESS SYSTEM

Aeroelastic systems with bilinear sti!nesses have already been extensively analysed in
previous work, such as Yang & Zhao (1988). The system used here to provide a reference for
the aeroservoelastic case di!ers from previous work in that it contains a bilinear sti!ness
element in the PCU. Hence, results are presented from the coupling of the bilinear system
with the displacement feedback of Section 4.1. Figure 13 shows the bifurcation plot for the
systems with bilinear pressure feedback spring. The plots are labelled &&no feedback'' for the
uncontrolled system, &&no delay'' for the system with control feedback but no delay and
&&delay"dt'' for the system with delayed control feedback. For airspeeds where the systems
are stable (up to 45 m/s), only zeros are plotted.



Figure 13. Bifurcation diagrams of system with bilinear spring.
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Between 37 m/s and just over 44)6 m/s, the uncontrolled bilinear system undergoes
LCOs. The limit cycles are period-1; hence, there are only two points plotted at each
airspeed. The amplitudes of the limit cycles increase dramatically around 38 m/s. Between
38 and 42 m/s, the increase in LCO amplitude is slow. After 42 m/s, the amplitudes increase
exponentially, which is a sign that the system is close to instability. At speeds above
44)6 m/s, the system becomes completely unstable and it #utters.

It has already been mentioned that the displacement feedback system was designed to
stabilize the linear aeroservoelastic system. The two main considerations in this section are
whether the feedback system can also stabilize the bilinear system and also what are the
e!ects of delaying the feedback. It is of interest to note that the system with bilinear sti!ness
undergoes LCOs at airspeeds above the #utter speed of the linear system with sti!ness
K

1
and below the #utter speed of the linear system with sti!ness K

2
.

Figure 13 shows the bifurcation diagram for the bilinear system with feedback (not
delayed). It can be seen that LCOs only begin to occur at airspeeds higher than 51 m/s. At
53 m/s, the LCOs switch from period-1 to period-2. Flutter occurs at 53)3 m/s which is only
slightly lower than the #utter speed of the linear controlled system (see Table 2).

Consequently, the e!ect of the feedback is to stabilize the system, despite the bilinear
actuator spring. Limit cycles appear later than in the open-loop system and they are of
lower amplitude. Additionally, #utter is delayed by approximately 16%.

Delaying the feedback signal by one simulation time step has an adverse e!ect on the
stability of the closed-loop system. Figure 13 also shows the bifurcation diagram for the
bilinear system with delayed feedback. Limit cycles (period-1) "rst appear at 48 m/s but
their amplitudes remain low up to an airspeed of just over 49 m/s. At 50 m/s, the limit cycles
change to period-3. At 51)5 m/s, the system bifurcates to an even higher period. Finally, at
51)8 m/s, the system starts to #utter. Nevertheless, the system with delayed feedback is more
stable than the open-loop system since limit cycles appear later and are initially of much
smaller amplitude.

6.2. STABILITY OF FREEPLAY SYSTEM

As with bilinear sti!ness, freeplay has been already thoroughly investigated, most recently
in Kim & Lee (1996) and Conner et al. (1997), though not in a PCU. Here, the e!ect of
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freeplay in conjunction with displacement feedback is of interest. Firstly, it should be
mentioned that freeplay is a much more nonlinear function than bilinear sti!ness and that
its e!ects are more pronounced. With reference to the system investigated here, it should be
noted that, since the sti!ness is zero inside the freeplay region, the only source of sti!ness in
the control surface pitch direction is aerodynamic sti!ness. This in turn signi"es that LCOs
are expected to be encountered at lower airspeeds than in the bilinear system.

The bifurcation diagram for the freeplay system with no feedback is shown in Figure 14.
The system is stable up to an airspeed of 16 m/s when period-3 limit cycles occur. The
amplitude of the LCO get larger in amplitude until #utter occurs at 47)5 m/s.

Figure 15 shows the bifurcation diagram for the freeplay system with undelayed feedback.
The system is stable up to an airspeed of 17 m/s when period-1 limit cycles appear. At
Figure 15. Bifurcation diagram of system with freeplay spring and feedback, no delay.

Figure 14. Bifurcation diagram of system with freeplay spring, no feedback.



Figure 16. Bifurcation diagram of system with freeplay spring, feedback and delay.
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18 m/s the limit cycles change to period-3. Finally, #utter occurs at 55 m/s. The feedback
has stabilized the system by delaying the appearance of LCOs by 2 m/s and increasing the
#utter speed by 16%. Additionally, the amplitudes of all limit cycles are lower than in the
open-loop system.

Finally, Figure 16 shows the bifurcation diagram for the freeplay system with delayed
feedback. Limit cycles "rst appear at 17 m/s and are period-2, as with the undelayed
feedback. At 50 m/s, the amplitude of the limit cycles starts to drastically increase and at
51 m/s a bifurcation to period-6 limit cycles occurs. The system begins to #utter at 52)3 m/s.

Figure 16 shows that the main e!ects of this delay are to decrease the #utter airspeed and
to increase the amplitude of high sub-critical LCOs. Nevertheless, as with the bilinear case,
the delayed feedback system is more stable than the open-loop system since the #utter speed
is increased by 10% and the limit cycles have smaller amplitudes than in the uncontrolled
case.

6.3. STABILITY OF SYSTEM WITH BACKLASH

Figure 17 shows the bifurcation plot for the open and closed-loop systems with backlash in
the pressure feedback spring. The open-loop system exhibits limit cycle behaviour from
a very low airspeed (8 m/s). The limit cycles up to 13 m/s are very complex and nonperiodic.
An example of such a limit cycle is shown in Figure 18 both in the phase-plane and in the
time domain. Such behaviour generally occurs in the presence of a strong instability. In this
case, it is caused by divergence at the low range of the #ight envelope, where the aerodynamic
sti!ness is quite low. At airspeeds higher than 13 m/s, where the aerodynamic sti!ness is
su$ciently high, the LCOs are stabilized and become period-1. At 34)5 m/s, a bifurcation to
period-2 limit cycles occurs but the system reverts back to period-1 LCOs at 36 m/s. Finally,
#utter occurs at 44 m/s. Hence, the backlash introduces a very high level of instability,
causing LCOs almost throughout the #ight envelope.

Figure 17 also displays the bifurcation diagram for the system with backlash in the
pressure feedback spring and undelayed feedback. Again, the "rst limit cycles appear at
8 m/s, but the displacement feedback does not allow divergence to occur, hence the LCOs



Figure 17. Bifurcation diagram of systems with backlash, open loop and closed loop.

Figure 18. Example of aperiodic LCO from system with backlash and no feedback, <"9 m/s.
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are period-1. Flutter is delayed beyond the #utter airspeed of the open-loop system by high
amplitude period-1 LCOs in the range 51}53 m/s. The controller has stabilized the system
by decreasing the amplitude of the limit cycles, stabilizing the low-speed LCOs and
increasing the #utter speed by 20%.

Finally, Figure 17 also shows the bifurcation diagram for the backlash system with
delayed feedback. The low-speed LCOs are period-1 but have very high amplitude, even
higher than those of the uncontrolled system, up until 40 m/s. At 48 m/s, the period index of
the limit cycles starts to increase very fast. This behaviour is called period-doubling
(Dimitriadis & Cooper 1999) and is, in general, an indication of impending instability.
The LCOs revert back to period-1 at an airspeed of 51 m/s but #utter occurs shortly after
that, at 52)1 m/s. In summary, the delayed feedback has increased the #utter speed of the
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uncontrolled system by 18% but has increased the limit cycle amplitudes at the lower end of
the speed-range.

6.4. STABILITY OF SYSTEM WITH CONTROL SURFACE PITCH LIMIT

The feedback signal in the scheme described in Section 4.3 is zero unless the linear
extrapolation of b, the control surface pitch degree of freedom, suggests that the value of
b in the next step will be higher than the de"ned pitch limit, in which case the feedback
signal is equal to !ab where a is a gain coe$cient. Consequently, it is obvious that, if the
pitch limit were equal to zero, then the control law would be a linear proportional feedback.
For the purposes of this work, the limit was set to $103.

The e!ectiveness of the control scheme is demonstrated in Figure 19 where the control
surface pitch is plotted against time. The dashed line is the demand signal fed to the control
Figure 20. Bifurcation diagram of system with control surface pitch limit.

Figure 19. Performance of control surface pitch limiting control scheme.



Figure 21. Limit cycle of system with control surface pitch limit at <"55 m/s.

Figure 22. Comparison of responses of frictionless system and system with friction at <"44.9 m/s: **,
F

R
"0)2; }} } , F

R
"0.
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surface through the power control unit. It can be seen that pitch rarely exceeds the limit of
103 (0.1745 rad), even though the demand angle is 123. Since the control system only
engages when the control surface pitch lies near the limit, it does not a!ect the decaying
impulse response of the system. Hence, self-excited oscillations are only possible when the
linear system #utters. In other words, the control system contains #utter by constraining the
system response onto a limit cycle. This can be seen in Figure 20 where the bifurcation
diagram for the pitch limited system is shown. Up to around 45)5 m/s the response is
decaying. Limit cycles exist at airspeeds between 45)5 and 57 m/s. Beyond this range, the
closed-loop system #utters. The #utter speed of the controlled system is 27% higher than
that of the uncontrolled system. Figure 20 shows that the limit cycles are very complex since
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many points appear at each airspeed, in fact so many that it is impossible to classify the limit
cycles in terms of period. A phase-space plot of a limit cycle at an airspeed of 55 m/s is
shown in Figure 21. The complicated shape of the limit cycles is due to the value of *t in
equation (4). In many cases, by the time the controller predicts an exceedence of the pitch
limit, the exceedence has already happened. A lower value of *t would give rise to better
behaved limit cycles but might be less realistic.

6.5. STABILITY OF SYSTEM WITH FRICTION IN THE PCU

Friction is a mechanism that removes energy from the motion of a system. Given that the
amplitude of the frictional force, F

R
, is low enough not to cause stoppages, its main function

is to e!ectively increase the damping present in the motion. A frictional force of varying
amplitude was added to the open-loop linear, freeplay and bilinear systems. As was
expected, the main consequence for all the systems was an increase in damping. This e!ect
can be observed in Figure 22 where the control surface pitch impulse response of the
open-loop, frictionless linear system is plotted on the same axes as that of the system with
friction. The "gure shows impulse responses at an airspeed very close to the #utter speed of
the linear system. The response of the system with friction dies out after 1)1 s, while that of
the frictionless system is completely undamped and remains at the same level forever.
Figure 23. Comparison of limit cycles of freeplay system with and without friction at <"43 m/s:**, F
R
"0)2;

} } } ( just visible), F
R
"0.

TABLE 3
Increase of #utter speeds due to friction

System Flutter speed, F
R
"0)0 (m/s) Flutter speed, F

R
"0)2 (m/s) % Increase

Linear 44)9 48 7%
Bilinear 44)6 46)8 5%
Freeplay 47)5 48)4 2%
Backlash 44 47)9 9%
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Friction does not cause limit cycles by itself, since it is an energy extraction mechanism.
As such, it a!ected positively the stability of the systems investigated in this work. The
#utter speeds of the linear, bilinear, freeplay and backlash systems were increased by the
introduction of friction, even when F

R
was low enough not to cause stoppages. Table 3

compares the the #utter speeds of all the open-loop systems with and without friction. The
gains in #utter speed, for this particular value of frictional amplitude, are not as impressive as
those achieved by the control systems. Additionally, the limit cycle amplitudes of the bilinear,
freeplay and backlash systems were decreased, as indicated by Figure 23 which compares the
limit cycles of the freeplay system with and without friction at an airspeed of 43 m/s

When F
R

exceeds a certain level, stoppages in the motion occur and the stability of all the
systems is a!ected dramatically. Figure 24 shows the variation of #utter airspeed for the
Figure 25. Comparison of responses of bilinear system with and without friction at <"50 m/s.

Figure 24. Variation of #utter speed of bilinear and freeplay systems with increasing frictional amplitude: **,
bilinear system with friction; } } } , freeplay system with friction.
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freeplay and bilinear systems with friction of increasing amplitude. In both cases, the #utter
speeds initially #atten towards a value of 49.5 m/s. However, at a particular value of the
frictional amplitude (2 N for the freeplay system and 2.5 N for the bilinear system), the
friction starts to cause stoppages and the LCOs that would have occurred in the absence of
friction are inhibited. Additionally, the #utter speed is increased and keeps increasing at
even higher values of F

R
. The response of the bilinear system with friction of amplitude

F
R
"2 N is compared to that of the frictionless bilinear system in Figure 25. It can be seen

that, in the absence of friction, the system undergoes limit cycle oscillations. Friction
suppresses the LCO by inhibiting the motion to such an extent that only irregular,
low-amplitude oscillations are possible.

7. CONCLUSIONS

A simple bending-heave airfoil with control surface system has been used to explore the
e!ect of nonlinearities on aeroservoelastic behaviour. It is possible for limit cycle oscilla-
tions to occur, which may be of high period and amplitude. The linear feedback that was
applied still helped to stabilize the system, even in the presence of three types of nonlin-
earity. Delays in the feedback signals reduced the e!ectiveness of the control in all systems
by a small amount. However, if the delay was too great, then instability occurred almost
immediately. A nonlinear control law designed to limit the control surface pitch response
was found to increase the #utter speed considerably by forcing the system to undergo limit
cycle oscillations instead. Friction was found to improve the stability of the systems
investigated here, when its amplitude took moderate values. At high values of the frictional
amplitude, stoppages in the motion suppressed the system dynamics.

Throughout this work, it has been assumed that limit cycle behaviour is more stable than
and, therefore, preferable to #utter. From a mathematical point of view this is corrects,
however, from an engineering perspective, some of the LCOs that the aeroservoelastic
systems underwent would be unacceptable. High-amplitude LCOs can negatively a!ect the
structural rigidity and handling qualities of aeroservoelastic systems whilst, even lower
amplitude LCOs can inrease the likelihood of fatigue failure. In order to determine which
LCO amplitudes are preferable to #utter, for a particular aircraft, a much more detailed,
case-speci"c analysis needs to be carried out. Additionally, more advanced aerodynamic
modelling methods can be employed to investigate aeroservoelastic behaviour in the
transonic #ight regime.
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